Centlein mediates an interaction between C-Nap1 and Cep68 to maintain centrosome cohesion.
نویسندگان
چکیده
Centrosome cohesion, mostly regarded as a proteinaceous linker between parental centrioles, ensures that the interphase centrosome(s) function as a single microtubule-organizing center. Impairment of centrosome cohesion leads to the splitting of centrosomes. Although the list of cohesion proteins is growing, the precise composition and regulation of centrosome cohesion are still largely unknown. In this study, we show that the centriolar protein centlein (also known as CNTLN) localizes to the proximal ends of the centrioles and directly interacts with both C-Nap1 (also known as Cep250) and Cep68. Moreover, centlein complexes with C-Nap1 and Cep68 at the proximal ends of centrioles during interphase and functions as a molecular link between C-Nap1 and Cep68. Depletion of centlein impairs recruitment of Cep68 to the centrosomes and, in turn, results in centrosome splitting. Both centlein and Cep68 are novel Nek2A substrates. Collectively, our data demonstrate that centrosome cohesion is maintained by the newly identified complex of C-Nap1-centlein-Cep68.
منابع مشابه
Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion.
The centrosome duplicates during the cell cycle but functions as a single microtubule-organising centre until shortly before mitosis. This raises the question of how centrosome cohesion is maintained throughout interphase. One dynamic model proposes that parental centrioles are held together through centriole-associated, entangling filaments. Central to this model are C-Nap1, a putative centrio...
متن کاملSTED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles
The centrosome linker proteins C-Nap1, rootletin, and CEP68 connect the two centrosomes of a cell during interphase into one microtubule-organizing center. This coupling is important for cell migration, cilia formation, and timing of mitotic spindle formation. Very little is known about the structure of the centrosome linker. Here, we used stimulated emission depletion (STED) microscopy to show...
متن کاملThe Centrosomal Protein C-Nap1 Is Required for Cell Cycle–Regulated Centrosome Cohesion
Duplicating centrosomes are paired during interphase, but are separated at the onset of mitosis. Although the mechanisms controlling centrosome cohesion and separation are important for centrosome function throughout the cell cycle, they remain poorly understood. Recently, we have proposed that C-Nap1, a novel centrosomal protein, is part of a structure linking parental centrioles in a cell cyc...
متن کاملBRCA2 mediates centrosome cohesion via an interaction with cytoplasmic dynein
BRCA2 is responsible for familial breast and ovarian cancer and has been linked to DNA repair and centrosome duplication. Here we analyzed the mechanism by which the centrosomal localization signal (CLS) of BRCA2 interacts with cytoplasmic dynein 1 to localize BRCA2 to the centrosome. In vitro pull-down assays demonstrated that BRCA2 directly binds to the cytoplasmic dynein 1 light intermediate...
متن کاملRootletin forms centriole-associated filaments and functions in centrosome cohesion
After duplication of the centriole pair during S phase, the centrosome functions as a single microtubule-organizing center until the onset of mitosis, when the duplicated centrosomes separate for bipolar spindle formation. The mechanisms regulating centrosome cohesion and separation during the cell cycle are not well understood. In this study, we analyze the protein rootletin as a candidate cen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 127 Pt 8 شماره
صفحات -
تاریخ انتشار 2014